All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Design of Nutrient Enriched Cement Paste with a Superabsorbent Polymer for the Bio-based Self-healing Concrete Development

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00336850" target="_blank" >RIV/68407700:21110/19:00336850 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Design of Nutrient Enriched Cement Paste with a Superabsorbent Polymer for the Bio-based Self-healing Concrete Development

  • Original language description

    The application of self-healing concrete for durability enhancement has become a widely studied topic in recent decades. This paper focuses on addition of a superabsorbent polymer (SAP) to bio-based self-healing concrete – a material in which cracks are autonomously sealed by incorporated microorganisms. As previously proposed, the SAP could serve as protection of the microorganisms against the harsh concrete environment and possibly to further enhance the materials autogenous sealing capacity. However, determining the applicable bio-based concrete mix design is not without obstacles as the immense absorption capacity of the SAP is, inter alia, closely related to ions present in the solution. This current study compares different mix designs of cement paste with the nutrients applied in the bio-based concrete and the addition of the SAP in dry and partially saturated states. The paste consistencies are determined, and a number of cement paste specimens is prepared to measure flexural and compressive strengths at 7 and 28 days from casting. The flowability results indicate that the SAP in a dry state absorbs slightly less than 25 g/g SAP of extra mixing water as the final consistency was similar to the reference paste. Further, the results showed that the partially saturated SAP is able to retain a great amount of the liquid throughout the mixing process. In this study, the strengths generally drop by still admissible 20% in the case of the dry SAP and extra water addition, whereas the replacement of mixing water by the partially saturated SAP results in a significant strength increase. These findings indicate that the dosage 0.5% SAP by cement weight in both of the states, dry and saturated, is applicable in the nutrient enriched cement paste from the mechanical perspective, although further work which would describe the absorption and retention mechanisms in depth is needed.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20102 - Construction engineering, Municipal and structural engineering

Result continuities

  • Project

    <a href="/en/project/GA18-15697S" target="_blank" >GA18-15697S: Self-healing of cementitious composites by bacteria-induced calcification</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Materials Science Forum

  • ISBN

  • ISSN

    1662-9752

  • e-ISSN

    1662-9752

  • Number of pages

    7

  • Pages from-to

  • Publisher name

    Trans Tech Publications

  • Place of publication

    Curich

  • Event location

    Brisbane

  • Event date

    Nov 13, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article