All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MAGSAC: Marginalizing Sample Consensus

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00337151" target="_blank" >RIV/68407700:21110/19:00337151 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/19:00337151

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/8953287" target="_blank" >https://ieeexplore.ieee.org/document/8953287</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR.2019.01044" target="_blank" >10.1109/CVPR.2019.01044</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    MAGSAC: Marginalizing Sample Consensus

  • Original language description

    A method called, sigma-consensus, is proposed to eliminate the need for a user-defined inlier-outlier threshold in RANSAC. Instead of estimating the noise sigma, it is marginalized over a range of noise scales. The optimized model is obtained by weighted least-squares fitting where the weights come from the marginalization over sigma of the point likelihoods of being inliers. A new quality function is proposed not requiring sigma and, thus, a set of inliers to determine the model quality. Also, a new termination criterion for RANSAC is built on the proposed marginalization approach. Applying sigma-consensus, MAGSAC is proposed with no need for a user-defined sigma and improving the accuracy of robust estimation significantly. It is superior to the state-of-the-art in terms of geometric accuracy on publicly available real-world datasets for epipolar geometry (F and E) and homography estimation. In addition, applying sigma-consensus only once as a post-processing step to the RANSAC output always improved the model quality on a wide range of vision problems without noticeable deterioration in processing time, adding a few milliseconds.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2019: Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-7281-3293-8

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    9

  • Pages from-to

    10189-10197

  • Publisher name

    IEEE

  • Place of publication

  • Event location

    Long Beach

  • Event date

    Jun 15, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article