On evaluation of the three-dimensional isogeometric beam element
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F20%3A00336320" target="_blank" >RIV/68407700:21110/20:00336320 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.14311/APP.2020.26.0024" target="_blank" >https://doi.org/10.14311/APP.2020.26.0024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/APP.2020.26.0024" target="_blank" >10.14311/APP.2020.26.0024</a>
Alternative languages
Result language
angličtina
Original language name
On evaluation of the three-dimensional isogeometric beam element
Original language description
The exact description of the arbitrarily curved geometries, including conic sections, is an undeniable advantage of isogeometric analysis~(IGA) over standard finite element method~(FEM). With B-spline/NURBS approximation functions used for both geometry and unknown approximations, IGA is able to exactly describe beams of various shapes and thus eliminate the geometry approximation errors. Moreover, naturally higher continuity than standard $C^0$ can be provided along the entire computational domain. This paper evaluates the performance of the nonlinear spatial Bernoulli beam adapted from formulation of Bauer et al. [1]. The element formulation is presented and the comparison with standard FEM straight beam element and fully three-dimensional analysis is provided. Although the element is capable of geometrically nonlinear analysis, only geometrically linear cases are evaluated for the purposes of this study.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20302 - Applied mechanics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
NMM 2019 Nano & Macro Mechanics
ISBN
978-80-01-06720-8
ISSN
—
e-ISSN
2336-5382
Number of pages
6
Pages from-to
24-29
Publisher name
Czech Technical University in Prague
Place of publication
Praha
Event location
Praha
Event date
Sep 11, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—