Quasistatic evolution for dislocation-free finite plasticity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F20%3A00381606" target="_blank" >RIV/68407700:21110/20:00381606 - isvavai.cz</a>
Alternative codes found
RIV/67985556:_____/20:00538035
Result on the web
<a href="https://doi.org/10.1051/cocv/2020031" target="_blank" >https://doi.org/10.1051/cocv/2020031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/cocv/2020031" target="_blank" >10.1051/cocv/2020031</a>
Alternative languages
Result language
angličtina
Original language name
Quasistatic evolution for dislocation-free finite plasticity
Original language description
We investigate quasistatic evolution in finite plasticity under the assumption that the plastic strain is compatible. This assumption is well-suited to describe the special case of dislocation-free plasticity and entails that the plastic strain is the gradient of a plastic deformation map. The total deformation can be then seen as the composition of a plastic and an elastic deformation. This opens the way to an existence theory for the quasistatic evolution problem featuring both Lagrangian and Eulerian variables. A remarkable trait of the result is that it does not require second-order gradients.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ESAIM: Control, Optimisation and Calculus of Variations
ISSN
1292-8119
e-ISSN
1262-3377
Volume of the periodical
26
Issue of the periodical within the volume
123
Country of publishing house
FR - FRANCE
Number of pages
23
Pages from-to
—
UT code for WoS article
000679831200003
EID of the result in the Scopus database
—