All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Photogrammetry using UAV-mounted GNSS RTK: Georeferencing strategies without GCPs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00349828" target="_blank" >RIV/68407700:21110/21:00349828 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/rs13071336" target="_blank" >https://doi.org/10.3390/rs13071336</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs13071336" target="_blank" >10.3390/rs13071336</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Photogrammetry using UAV-mounted GNSS RTK: Georeferencing strategies without GCPs

  • Original language description

    Georeferencing using ground control points (GCPs) is the most common strategy in photogrammetry modeling using unmanned aerial vehicle (UAV)-acquired imagery. With the increased availability of UAVs with onboard global navigation satellite system-real-time kinematic (GNSS RTK), georeferencing without GCPs is becoming a promising alternative. However, systematic elevation error remains a problem with this technique. We aimed to analyze the reasons for this systematic error and propose strategies for its elimination. Multiple flights differing in the flight altitude and image acquisition axis were performed at two real-world sites. A flight height of 100 m with a vertical (nadiral) image acquisition axis was considered primary, supplemented with flight altitudes of 75 m and 125 m with a vertical image acquisition axis and two flights at 100 m with oblique image acquisition axes (30° and 15°). Each of these flights was performed twice to produce a full double grid. Models were reconstructed from individual flights and their combinations. The elevation error from individual flights or even combinations yielded systematic elevation errors of up to several decimeters. This error was linearly dependent on the deviation of the focal length from the reference value. A combination of two flights at the same altitude (with nadiral and oblique image acquisition) was capable of reducing the systematic elevation error to less than 0.03 m. This study is the first to demonstrate the linear dependence between the systematic elevation error of the models based only on the onboard GNSS RTK data and the deviation in the determined internal orientation parameters (focal length). In addition, we have shown that a combination of two flights with different image acquisition axes can eliminate this systematic error even in real-world conditions and that georeferencing without GCPs is, therefore, a feasible alternative to the use of GCPs

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10500 - Earth and related environmental sciences

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Remote sensing

  • ISSN

    2072-4292

  • e-ISSN

    2072-4292

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000638803500001

  • EID of the result in the Scopus database

    2-s2.0-85104046359