Efficient finite difference formulation of a geometrically nonlinear beam element
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00352518" target="_blank" >RIV/68407700:21110/21:00352518 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/nme.6820" target="_blank" >https://doi.org/10.1002/nme.6820</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nme.6820" target="_blank" >10.1002/nme.6820</a>
Alternative languages
Result language
angličtina
Original language name
Efficient finite difference formulation of a geometrically nonlinear beam element
Original language description
The article is focused on a two-dimensional geometrically nonlinear formulation of a Bernoulli beam element that can accommodate arbitrarily large rotations of cross sections. The formulation is based on the integrated form of equilibrium equations, which are combined with the kinematic equations and generalized material equations, leading to a set of three first-order differential equations. These equations are then discretized by finite differences and the boundary value problem is converted into an initial value problem using a technique inspired by the shooting method. Accuracy of the numerical approximation is conveniently increased by refining the integration scheme on the element level while the number of global degrees of freedom is kept constant, which leads to high computational efficiency. The element has been implemented into an open-source finite element code. Numerical examples show a favorable comparison with standard beam elements formulated in the finite-strain framework and with analytical solutions
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20102 - Construction engineering, Municipal and structural engineering
Result continuities
Project
<a href="/en/project/GX19-26143X" target="_blank" >GX19-26143X: Non-periodic pattern-forming metamaterials: Modular design and fabrication</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal for Numerical Methods in Engineering
ISSN
0029-5981
e-ISSN
1097-0207
Volume of the periodical
122
Issue of the periodical within the volume
September
Country of publishing house
US - UNITED STATES
Number of pages
41
Pages from-to
7013-7053
UT code for WoS article
000695124300001
EID of the result in the Scopus database
2-s2.0-85114735478