All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Magnesium Potassium Phosphate Cement-Based Derivatives for Construction Use: Experimental Assessment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F22%3A00356333" target="_blank" >RIV/68407700:21110/22:00356333 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/ma15051896" target="_blank" >https://doi.org/10.3390/ma15051896</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma15051896" target="_blank" >10.3390/ma15051896</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Magnesium Potassium Phosphate Cement-Based Derivatives for Construction Use: Experimental Assessment

  • Original language description

    The presented research is focused on the development and testing of the magnesium potassium phosphate cement-based materials (MKPC-based). Firstly, the fresh state properties of the pastes consisting of dead burned magnesia powder, potassium dihydrogen phosphate, setting retarder borax applied in the range of 0–10 wt.%, and batch water were investigated. The mixture with 5 wt.% of borax proved to be the most advantageous in terms of setting time, sample integrity, and mechanical strength; therefore, it was chosen as the binder for the following part of the study—MKPC-based mortar development. In the next step, the MKPC paste containing 5 wt.% of borax was supplemented by silica sand aggregate, and the resulting material was marked as a reference. Subsequently, three other mixtures were derived by replacing 100% of quartz sand by lightweight aggregate; namely by expanded glass aggregate, waste rubber from tires, and combination of both in ratio 1:1. The aggregates were characterized by chemical composition (except for the rubber granulate), and loose and compacted powder density. For the resulting hardened composites, basic structural, hygric, strength, and thermal parameters were investigated. The use of lightweight aggregates brought in a considerable decrease in heat transport parameters and low water permeability while maintaining sufficient strength. The favorable obtained material properties are underscored by the fact that magnesia-phosphate is considered to be a low-carbon binder. The combination of magnesia-phosphate binder and recycled aggregate provides a satisfying, environmentally friendly, and thermally efficient alternative to traditional Portland cement-based materials.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

    1996-1944

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    23

  • Pages from-to

  • UT code for WoS article

    000768751500001

  • EID of the result in the Scopus database

    2-s2.0-85126320489