MICROSTRUCTURE RECONSTRUCTION VIA ARTIFICIAL NEURAL NETWORKS: A COMBINATION OF CAUSAL AND NON-CAUSAL APPROACH
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F22%3A00359225" target="_blank" >RIV/68407700:21110/22:00359225 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.14311/APP.2022.34.0032" target="_blank" >https://doi.org/10.14311/APP.2022.34.0032</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/APP.2022.34.0032" target="_blank" >10.14311/APP.2022.34.0032</a>
Alternative languages
Result language
angličtina
Original language name
MICROSTRUCTURE RECONSTRUCTION VIA ARTIFICIAL NEURAL NETWORKS: A COMBINATION OF CAUSAL AND NON-CAUSAL APPROACH
Original language description
We investigate the applicability of artificial neural networks (ANNs) in reconstructing a sample image of a sponge-like microstructure. We propose to reconstruct the image by predicting the phase of the current pixel based on its causal neighbourhood, and subsequently, use a non-causal ANN model to smooth out the reconstructed image as a form of post-processing. We also consider the impacts of different configurations of the ANN model (e.g., the number of densely connected layers, the number of neurons in each layer, the size of both the causal and non-causal neighbourhood) on the models’ predictive abilities quantified by the discrepancy between the spatial statistics of the referenceand the reconstructed sample.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)
Result continuities
Project
<a href="/en/project/GX19-26143X" target="_blank" >GX19-26143X: Non-periodic pattern-forming metamaterials: Modular design and fabrication</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
NMM 2021 Nano & Macro Mechanics
ISBN
978-80-01-06976-9
ISSN
—
e-ISSN
2336-5382
Number of pages
6
Pages from-to
32-37
Publisher name
České vysoké učení technické v Praze
Place of publication
Praha
Event location
Praha
Event date
Sep 16, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—