All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Micro-Scale Fracture Properties of Cementitious Composites

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F23%3A00370748" target="_blank" >RIV/68407700:21110/23:00370748 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Micro-Scale Fracture Properties of Cementitious Composites

  • Original language description

    This book is focused on the experimental investigation of fracture and related mechanical properties of cementitious composites at micro-level. The measured data are used for a better understanding of microstructure, detailed mechanical characterization of micro-scale material phases and as an input for multi-scale models, which can predict macroscopic mechanical properties. Characterization of mechanical properties (Young's modulus, hardness, creep) of individual hydration products is possible due to advanced experimental technique, nanoindentation. Recently a new nanoindentation mode accelerated property mapping (XPM) was designed to access local mechanical properties map in a few minutes. The mode was compared to standard nanoindentation techniques. Fracture properties (tensile strength and fracture energy) on a micrometer scale were measured for individual hydration products of pure cement paste and for the first time for silica fume blended cement paste and for main reaction products of alkali-activated fly-ash. The experiments were performed on the 14-20 µm long micro-cantilever beams, fabricated by Focused Ion Beam (FIB). Similar values of tensile strength were found for the outer product (~260 MPa) and inner product (~700 MPa) of pure and blended cement pastes. Additionally, the tensile strength of N-A-S-H gel (~340 MPa) was found to be mechanically comparable with the outer product. Moreover, the effects of a high vacuum and FIB milling were studied. The scratch test was used as another technique to access fracture toughness of individual hydration products cement paste. The scratch tests were supported by techniques like Scanning Electron Microscopy and nondestructive acoustic emission method. The fracture toughness results correspond well with micro-cantilever bending results. Lastly, two initial experiments providing preliminary data of multiple phase testing were performed to find the source of the rapid decrease of mechanical properties from micro-scale to meso-scale.

  • Czech name

  • Czech description

Classification

  • Type

    B - Specialist book

  • CEP classification

  • OECD FORD branch

    20101 - Civil engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • ISBN

    978-80-01-07241-7

  • Number of pages

    134

  • Publisher name

    ČVUT v Praze, Fakulta stavební

  • Place of publication

    Praha

  • UT code for WoS book