All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Aloe Vera-Based Concrete Superplasticizer for Enhanced Consolidation with Limestone Calcined Clay Cement

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00370600" target="_blank" >RIV/68407700:21110/24:00370600 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/app14010358" target="_blank" >https://doi.org/10.3390/app14010358</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app14010358" target="_blank" >10.3390/app14010358</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Aloe Vera-Based Concrete Superplasticizer for Enhanced Consolidation with Limestone Calcined Clay Cement

  • Original language description

    Self-consolidating concrete (SCC) is renowned for its outstanding workability and ability to seamlessly flow into intricate structures with minimal vibrations, achieved through the incorporation of chemical admixtures. This study pioneers an innovative approach by exploring the use of the cost-effective and readily available plant extract aloe vera mucilage (AVM) as a bio-admixture for SCC. The primary objective is to assess the impact of AVM on SCC formulations, including those comprising ordinary Portland cement (OPC) and blended cement LC3 (clinker 50%, calcined waste clay 30%, limestone 15%, gypsum 5%). AVM is applied at varying dosages at up to 10%. Findings reveal that LC3 exhibits lower consistency, reduced slump values, and extended initial and final setting times compared to OPC. With increasing plasticizer dosage, V-funnel and L-box values decrease. Notably, OPC samples with both plasticizers outperform LC3 in compressive strength at 7, 14, and 28 days. Significantly, a 2.5% AVM dosage demonstrates enhanced compressive strength in both OPC and LC3 samples. In summary, this research positions AVM as an innovative and comparable alternative to commercial plasticizers, contributing to reduced yield stress and increased slump flow in SCC.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

    <a href="/en/project/GA20-14506S" target="_blank" >GA20-14506S: Hydration stoppage techniques for cement, lime and gypsum</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Sciences

  • ISSN

    2076-3417

  • e-ISSN

    2076-3417

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    001139303700001

  • EID of the result in the Scopus database

    2-s2.0-85192435381