All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep learning in historical geography

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00376355" target="_blank" >RIV/68407700:21110/24:00376355 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.13164/juniorstav.2024.24097" target="_blank" >https://doi.org/10.13164/juniorstav.2024.24097</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13164/juniorstav.2024.24097" target="_blank" >10.13164/juniorstav.2024.24097</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep learning in historical geography

  • Original language description

    In relation to the rapid development of artificial intelligence, the possibilities of automatic processing of spatial data are increasing. Scanned topographical maps are a valued source of historical information. Neural networks allow us to extract information quickly and efficiently from such data, eliminating the difficult and repetitive work that would otherwise have to be done by a human. The article presents two case studies exploring the possibilities of using deep learning in historical geography. The first one is concerned with detecting and extracting swamps from topographic maps, while the second one attempts to automatically vectorize contours from the State Map 1 : 5 000.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    21100 - Other engineering and technologies

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Juniorstav 2024: Proceedings 26th International Scientific Conference Of Civil Engineering

  • ISBN

    978-80-86433-83-7

  • ISSN

    3029-5904

  • e-ISSN

    3029-5904

  • Number of pages

    5

  • Pages from-to

  • Publisher name

    Brno University of Technology

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Jan 25, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article