All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Determination of Strain and Stress Field in Screening Test for Concrete Fire Spalling—Passive Restraint Effect

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00378766" target="_blank" >RIV/68407700:21110/24:00378766 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/ma17246210" target="_blank" >https://doi.org/10.3390/ma17246210</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma17246210" target="_blank" >10.3390/ma17246210</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Determination of Strain and Stress Field in Screening Test for Concrete Fire Spalling—Passive Restraint Effect

  • Original language description

    The paper examines the impact of passive restraint on fire-induced spalling in concrete, utilizing a concrete mixture to minimize compositional variability. A variety of specimen geometries was prepared, including standard cubes and cylinders for the determination of mechanical properties and slabs of different dimensions for fire spalling tests conducted under controlled conditions. A top-opening Dragon furnace, which applies ISO 834-1 fire curves, was used to evaluate the influence of “cold rim” boundaries, where slab edges were insulated to create thermal restraint. The cold rims were categorized as 0 cm, 10 cm, and 20 cm, with each modification representing a different degree of thermal expansion restraint. Digital image correlation (DIC) was utilized to monitor the strain fields on the unheated slab surfaces. The findings demonstrated that increasing the cold rim width implies a rise in compressive stress and strain in the central zone, thereby precipitating a more pronounced spalling behaviour. The unrestrained slabs (cold rim 0 cm) exhibited minimal spalling, whereas the restrained slabs (cold rim 20 cm) demonstrated significant spalling depths and volumes. The study confirms that thermal dilation restraint intensifies the severity of spalling and provides a quantitative framework that links stress evolution, strain distribution, and spalling depth. The findings emphasize the necessity of managing thermal restraint to properly assess fire-induced concrete spalling in material screening tests.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

    1996-1944

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    24

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

  • UT code for WoS article

    001384739900001

  • EID of the result in the Scopus database

    2-s2.0-85213231572