3D printing of porous beta-titanium alloys TiNbTaSn
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00379560" target="_blank" >RIV/68407700:21110/24:00379560 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/24:00379560
Result on the web
<a href="https://wbc2024.com" target="_blank" >https://wbc2024.com</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
3D printing of porous beta-titanium alloys TiNbTaSn
Original language description
Conventional, homogeneous (dental and orthopaedic) implants are the ones most frequently used, but unfortunately there is still a small percentage of failures in the early stages after surgery. Changing the stiffness of the material and approximating it with the properties of human bone is essential for aseptic loosening. This change can be achieved either by changing the material or by modifying the implant structure leading to a reduction in stiffness. 3D printing technology, which has emerged in the last decade, provides an efficient way to create such materials, structures and even implants tailored to the patient. However, the printing parameters are not resolved for beta-titanium alloys, which vary by material, powder parameters, product quality requirements and surface condition. The relationship of wall thickness and pore size to mechanical properties and implant osseointegration is not resolved, along with appropriate numerical models. In this work, we focus on the use of 3D printing of beta-titanium alloy TiNbTaSn for medical applications, with emphasis on the evaluation of tensile strength and other mechanical properties of thin samples that serve as the basis for printing gyroid structures. Beta-titanium alloys offer an excellent combination of mechanical strength and biocompatibility, which is crucial for the manufacture of implants and other medical products. We compare the printed beta-titanium structure, including defects, with the properties of the already more extensively mapped TiAlV alloy. These data are then used as the computational basis for modelling gyroid structures using a lattice model of discrete particles. The polyhedra will represent the internal structure of the printed material based on the number, distribution and size of the particles. Gyroid structures are known for their high strength and lightness, making them ideal for orthopaedic and dental applications, as well as representing an innovative approach to developing materials and technologies to improve healthcare and patient treatment.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
<a href="/en/project/GA23-04971S" target="_blank" >GA23-04971S: Prediction of mechanical behaviour of structures 3D printed based on alloy of titanium with betastructure</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů