All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Convolutional neural networks for road surface classification on aerial imagery

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00379823" target="_blank" >RIV/68407700:21110/24:00379823 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.7717/PEERJ-CS.2571" target="_blank" >https://doi.org/10.7717/PEERJ-CS.2571</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7717/PEERJ-CS.2571" target="_blank" >10.7717/PEERJ-CS.2571</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Convolutional neural networks for road surface classification on aerial imagery

  • Original language description

    Any place the human species inhabits is inevitably modified by them. One of the first features that appear everywhere, in urban areas as well as in the countryside or deep forests, are roads. Further, roads and streets in general reflect their omnipresent and significant role in our lives through the flow of goods, people, and even culture and information. However, their contribution to the public is highly influenced by their surface. Yet, research on automated road surface classification from remotely sensed data is peculiarly scarce. This work investigates the capacities of chosen convolutional neural networks (fully convolutional network (FCN), U-Net, SegNet, DeepLabv3+) on this task. We find that convolutional neural network (CNN) are capable of distinguishing between compact (asphalt, concrete) and modular (paving stones, tiles) surfaces for both roads and sidewalks on aerial data of spatial resolution of 10 cm. U-Net proved its position as the best-performing model among the tested ones, reaching an overall accuracy of nearly 92%. Furthermore, we explore the influence of adding a near-infrared band to the basic red green blue (RGB) scenes and stress where it should be used and where avoided. Overfitting strategies such as dropout and data augmentation undergo the same examination and clearly show their pros and cons. Convolutional neural networks are also compared to single-pixel based random forests and show indisputable advantage of the context awareness in convolutional neural networks, U-Net reaching almost 25% higher accuracy than random forests. We conclude that convolutional neural networks and U-Net in particular should be considered as suitable approaches for automated semantic segmentation of road surfaces on aerial imagery, while common overfitting strategies should only be used under particular conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10500 - Earth and related environmental sciences

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PeerJ Computer Science

  • ISSN

    2376-5992

  • e-ISSN

    2376-5992

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    26

  • Pages from-to

  • UT code for WoS article

    001415620300005

  • EID of the result in the Scopus database

    2-s2.0-85214492007