Sparse polynomial chaos expansions for uncertainty quantification in thermal tomography
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00382838" target="_blank" >RIV/68407700:21110/24:00382838 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.cam.2023.115406" target="_blank" >https://doi.org/10.1016/j.cam.2023.115406</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2023.115406" target="_blank" >10.1016/j.cam.2023.115406</a>
Alternative languages
Result language
angličtina
Original language name
Sparse polynomial chaos expansions for uncertainty quantification in thermal tomography
Original language description
This contribution presents the identification strategy of thermal parameters relying solely on data measured on boundaries - thermal tomography. The idea is to obtain crucial information about the thermal properties inside the domain under consideration while keeping the test sample intact. Such methodology perfectly fits into historic preservation where it is of particular interest to perform only non-destructive surface measurements. We propose an advanced, accelerated, and reliable inverse solver for thermal tomography problems. Here, Bayesian inference is addressed as a method, where unknown parameters are modeled as random variables regularizing the inverse problem. The obtained results are probability distributions - posterior distributions - summarizing all available information and any remaining uncertainty in the values of thermal parameters. Novelties of our approach consist in the combination of (i) formulation of parameter identification in a probabilistic setting, and (ii) use of the surrogate models based on the sparse polynomial chaos expansion. This new sparse formulation significantly reduces the total number of polynomial terms and represents the main achievement of this paper.& COPY; 2023 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20101 - Civil engineering
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
1879-1778
Volume of the periodical
436
Issue of the periodical within the volume
115406
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
—
UT code for WoS article
001028963100001
EID of the result in the Scopus database
2-s2.0-85164247022