All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Development of simulation infrastructure for multi-physics problems and its applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00382880" target="_blank" >RIV/68407700:21110/24:00382880 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Development of simulation infrastructure for multi-physics problems and its applications

  • Original language description

    Coupled multi-physics problems occur quite frequently in the domain of civil engineering. Thermo-mechanics, heat and moisture transport, and fire-structure interaction present a few examples. Developed MuPIF simulation platform provides complete environment for solution of complex multi-physical problems. It allows to create simulation workflows, linking various computational software tools together. The platform supports use of distributed computational resources, communicating over the network. It defines communication protocol for steering of the simulations and data exchange, based on standardized data types. Platform database with REST API stores definitions of simulation workflows, their executions and related simulation data. Web user interface serves to define simulation executions, set the input data and inspect the simulation outputs. Simulation executions are processed with a~scheduling service with respect to available computational resources. Supporting web applications provide assistance with computational software integration into the platform, and with creation of workflow implementation from graphical representation of the simulation scenario. The platform accommodates ontological approach to semantic data storage, to support the concept of digital twin, and tracking of data history, which can be used to calculate and analyze various simulation scenarios. Use of the platform is demonstrated on several basic examples, and on a real usecase, which presents a coupled problem, containing CFD fire task, and FEM thermal and mechanical tasks. This simulation workflow was used to calculate fire resistance of concrete, steel and timber structural elements, and its calculations were verified with experiments. The topic of fire resistance was extended with studies of methods for fire protection of steel elements with cement-based and timber materials. For timber in the role of fire protection, a concept of moving boundary was introduced to emulate timber burnout during long fire exposure.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20101 - Civil engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů