Generation of Regression Trees using Reinforcement Learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F03%3A03087741" target="_blank" >RIV/68407700:21220/03:03087741 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Generation of Regression Trees using Reinforcement Learning
Original language description
We present a novel methodology for regression trees generation that uses the reinforcement learning frame for learning ef_cient regression trees. We describe the basic variant of such a methodology that uses the Monte-Carlo method to explore the space ofpossible regression trees. Comparison with other methods of regression is performed and evaluated. Our algorithm is implemented as a software program in the JAVA programming language and uses the framework of WEKA machine learning library. This work canbe seen as a step toward on-line learning methodology for generation of decision and regression trees on drifting concepts.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
EUNITE 2003
ISBN
3-86130-194-6
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
262-266
Publisher name
Verlag Mainz
Place of publication
Aachen
Event location
Oulu
Event date
Jul 10, 2003
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—