Biological Data Preprocessing: A Case Study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F03%3A03087919" target="_blank" >RIV/68407700:21220/03:03087919 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Biological Data Preprocessing: A Case Study
Original language description
This paper presents two case studies illustrating the problem of data pre-processing as the first step in computer-aided analysis of biological signals used in clinical decision support. Methods for data extraction from ECG and EEG signals are described.We show the differences between these two signal types and the reasons why different transforms are used for their pre-processing. Analysis of ECG records is performed by the wavelet transform, and analysis of EEG records is performed by the Fourier transform. The wavelet transform allows good localisation of QRS complexes, P and T waves in time and amplitude. The average accuracy of detection of all events is above 87 per cent. Adaptive segmentation abstracts the EEG signal data into stationary segments and the Fourier transform calculates their basic characteristics. In both cases extracted data are used as inputs for learning methods.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Intelligent and Adaptive Systems in Medicine
ISBN
—
ISSN
—
e-ISSN
—
Number of pages
23
Pages from-to
77-99
Publisher name
CVUT FEL Praha
Place of publication
Praha
Event location
Praha
Event date
Mar 31, 2003
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—