Numerical Solution of Laminar Incompressible Generalized Newtonian Fluids Flow
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F11%3A00179429" target="_blank" >RIV/68407700:21220/11:00179429 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.amc.2010.07.049" target="_blank" >http://dx.doi.org/10.1016/j.amc.2010.07.049</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2010.07.049" target="_blank" >10.1016/j.amc.2010.07.049</a>
Alternative languages
Result language
angličtina
Original language name
Numerical Solution of Laminar Incompressible Generalized Newtonian Fluids Flow
Original language description
This paper deals with the numerical solution of laminar viscous incompressible flows for generalized Newtonian fluids in the branching channel. The generalized Newtonian fluids contain Newtonian fluids, shear thickening and shear thinning non-Newtonian fluids. The mathematical model is the generalized system of Navier-Stokes equations. The finite volume method combined with an artificial compressibility method is used for spatial discretization. For time discretization the explicit multistage Runge-Kutta numerical scheme is considered. Steady state solution is achieved for t --> inf. using steady boundary conditions and followed by steady residual behavior. For unsteady solution a dual-time stepping method is considered. Numerical results for flows intwo dimensional and three dimensional branching channel are presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BK - Liquid mechanics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
217
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
5125-5133
UT code for WoS article
000286659100012
EID of the result in the Scopus database
—