Positive trigonometric polynomials for strong stability of difference equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F11%3A00184748" target="_blank" >RIV/68407700:21220/11:00184748 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/11:00184748
Result on the web
<a href="http://www.ifac-papersonline.net/Detailed/47575.html" target="_blank" >http://www.ifac-papersonline.net/Detailed/47575.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3182/20110828-6-IT-1002.01902" target="_blank" >10.3182/20110828-6-IT-1002.01902</a>
Alternative languages
Result language
angličtina
Original language name
Positive trigonometric polynomials for strong stability of difference equations
Original language description
We follow a polynomial approach to analyse strong stability of linear difference equations with several independent delays. Upon application of the Hermite stability criterion on the discrete-time homogeneous characteristic polynomial, assessing strong stability amounts to deciding positive definiteness of a multivariate trigonometric polynomial matrix. This latter problem is addressed with a converging hierarchy of linear matrix inequalities (LMIs). Numerical experiments indicate that certificates of strong stability can be obtained at a reasonable computational cost for state dimension and number of delays not exceeding 4 or 5.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 18th IFAC World Congress, 2011
ISBN
978-3-902661-93-7
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
296-301
Publisher name
IFAC
Place of publication
Bologna
Event location
Milano
Event date
Aug 28, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—