A Linearized System Describing Stationary Incompressible Viscous Flow around Rotating and Translating Bodies: Improved Decay Estimates of Velocity and its Gradient
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F11%3A00190946" target="_blank" >RIV/68407700:21220/11:00190946 - isvavai.cz</a>
Result on the web
<a href="http://www.aimsciences.org" target="_blank" >http://www.aimsciences.org</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Linearized System Describing Stationary Incompressible Viscous Flow around Rotating and Translating Bodies: Improved Decay Estimates of Velocity and its Gradient
Original language description
The authors consider a model of steady viscous incompressible flow past a translating rotating rigid body. They use a linearization of a general model and the fundamental solutions proposed in [E. A. Thomann and R. B. Guenther, J. Math. Fluid Mech. 8 (2006), no. 1, 77-98, to obtain a representation for the velocity field, which is then used to obtain some pointwise decay estimates and to identify a leading term with respect to this decay. Also, the authors obtain a representation theorem for weak solutions of stationary Navier-Stokes systems with Oseen rotational terms. Improved decay estimates of velocity and its gradient were derived.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190804" target="_blank" >IAA100190804: The motion of rigid bodies in liquid: mathematical analysis, numerical simulation and related problems</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Dynamical Systems and Differential Equations, DCDS Supplement 2011
ISBN
978-1-60133-007-9
ISSN
1078-0947
e-ISSN
—
Number of pages
11
Pages from-to
351-361
Publisher name
American Institute Mathematical Sciences
Place of publication
Springfield
Event location
Dresden
Event date
May 25, 2010
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—