The Analysis of Stationary Viscous Incompressible Flow Through a Rotating Radial Blade Machine, Existence of a Weak Solution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F12%3A00197746" target="_blank" >RIV/68407700:21220/12:00197746 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.amc.2011.05.020" target="_blank" >http://dx.doi.org/10.1016/j.amc.2011.05.020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2011.05.020" target="_blank" >10.1016/j.amc.2011.05.020</a>
Alternative languages
Result language
angličtina
Original language name
The Analysis of Stationary Viscous Incompressible Flow Through a Rotating Radial Blade Machine, Existence of a Weak Solution
Original language description
The paper deals with the analysis of the mathematical model of the two dimensional stationary viscous incompressible flow through a rotating radial blade machine. The flow is described and studied in the rotating frame. The paper provides the classical and weak formulation of the corresponding boundary value problem. The boundary condition on the outflow is the so called ''natural'' boundary condition, with the nonlinear term proposed by Bruneau and Fabrie (1996), and also modified by a term arising from the rotation of the machine. The existence of a weak solution is proved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP201%2F09%2FP413" target="_blank" >GP201/09/P413: Matematical analysis and numerical solution of the flow through cascade of profiles</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
219
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
3316-3322
UT code for WoS article
000311280000004
EID of the result in the Scopus database
—