All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hybridized GA-optimization of Neural Dynamic Model for Nonlinear Process

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F12%3A00198066" target="_blank" >RIV/68407700:21220/12:00198066 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CarpathianCC.2012.6228644" target="_blank" >http://dx.doi.org/10.1109/CarpathianCC.2012.6228644</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CarpathianCC.2012.6228644" target="_blank" >10.1109/CarpathianCC.2012.6228644</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hybridized GA-optimization of Neural Dynamic Model for Nonlinear Process

  • Original language description

    Neural networks as universal approximators possess capability to model complex nonlinear phenomena. However, when almost nothing is known about the modeled dynamic process it is difficult to determine important parameters like the number of neurons or the size of regressor vector (dynamic order). In order to avoid suboptimal settings for a dynamic model using trial-and-error method, genetic algorithm is used for optimizing the neural dynamic model. To improve the results even more, the genetic optimization is hybridized with a local optimizer in the form of Levenberg-Marquardt algorithm commonly used for neural network training. Here a neural model of biomass-fired boiler emissions is considered, which is eventually intended for predictive control. Series-parallel NARX model is used with two hidden layer neural network and tansigmoid transfer functions. The simpler neural model structure will be computationally less expensive what is important for online predictive control. The results

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JB - Sensors, detecting elements, measurement and regulation

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 13th International Carpathian Control Conference

  • ISBN

    978-1-4577-1866-3

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    227-232

  • Publisher name

    Technical University of Košice

  • Place of publication

    Košice

  • Event location

    Podbánské

  • Event date

    May 28, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article