A Neural Network Model for Predicting NOx at the Mělník 1 Coal-powder Power Plant
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F12%3A00204500" target="_blank" >RIV/68407700:21220/12:00204500 - isvavai.cz</a>
Result on the web
<a href="http://ctn.cvut.cz/ap/index.php?year=2012&idissue=80" target="_blank" >http://ctn.cvut.cz/ap/index.php?year=2012&idissue=80</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Neural Network Model for Predicting NOx at the Mělník 1 Coal-powder Power Plant
Original language description
This paper presents a non-conventional dynamic neural network that was designed for real time prediction of NOx at the coal powder power plant Mělník 1, and results on real data are shown and discussed. The paper also presents the signal preprocessing techniques, the input-reconfigurable architecture, and the learning algorithm of the proposed neural network, which was designed to handle the non-stationarity of the burning process as well as individual failures of the measured variables. The advantagesof our designed neural network over conventional neural networks are discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/FR-TI1%2F538" target="_blank" >FR-TI1/538: Measurement technology for advanced combustion control</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Polytechnica
ISSN
1210-2709
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
6
Pages from-to
17-22
UT code for WoS article
—
EID of the result in the Scopus database
—