Quasistatic approximations for stiff second order differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F12%3A00215036" target="_blank" >RIV/68407700:21220/12:00215036 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.apnum.2012.06.030" target="_blank" >http://dx.doi.org/10.1016/j.apnum.2012.06.030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apnum.2012.06.030" target="_blank" >10.1016/j.apnum.2012.06.030</a>
Alternative languages
Result language
angličtina
Original language name
Quasistatic approximations for stiff second order differential equations
Original language description
Stiff terms in second order ordinary differential equations may cause large computation time due to high frequency oscillations. Quasistatic approximations eliminate these high frequency solution components in the dynamical simulation of multibody systems by neglecting inertia forces. In the present paper, we study the approximation error of this approach using classical results from singular perturbation theory. The transformation of the linearly implicit second order model equations from multibody dynamics to the canonical (semi-)explicit form of first order singularly perturbed ordinary differential equations is studied in detail. Numerical tests for the model of a walking mobile robot with stiff contact forces between legs and ground show that thecomputation time may be reduced by a factor up to 10 using the proposed quasistatic approximation.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JR - Other machinery industry
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Numerical Mathematics
ISSN
0168-9274
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
1579-1590
UT code for WoS article
000308685700026
EID of the result in the Scopus database
—