All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quasistatic approximations for stiff second order differential equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F12%3A00215036" target="_blank" >RIV/68407700:21220/12:00215036 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.apnum.2012.06.030" target="_blank" >http://dx.doi.org/10.1016/j.apnum.2012.06.030</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apnum.2012.06.030" target="_blank" >10.1016/j.apnum.2012.06.030</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quasistatic approximations for stiff second order differential equations

  • Original language description

    Stiff terms in second order ordinary differential equations may cause large computation time due to high frequency oscillations. Quasistatic approximations eliminate these high frequency solution components in the dynamical simulation of multibody systems by neglecting inertia forces. In the present paper, we study the approximation error of this approach using classical results from singular perturbation theory. The transformation of the linearly implicit second order model equations from multibody dynamics to the canonical (semi-)explicit form of first order singularly perturbed ordinary differential equations is studied in detail. Numerical tests for the model of a walking mobile robot with stiff contact forces between legs and ground show that thecomputation time may be reduced by a factor up to 10 using the proposed quasistatic approximation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JR - Other machinery industry

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Numerical Mathematics

  • ISSN

    0168-9274

  • e-ISSN

  • Volume of the periodical

    62

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    1579-1590

  • UT code for WoS article

    000308685700026

  • EID of the result in the Scopus database