Numerical study of steady and unsteady flow for power-law type generalized Newtonian fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F13%3A00241955" target="_blank" >RIV/68407700:21220/13:00241955 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00607-013-0301-9" target="_blank" >http://dx.doi.org/10.1007/s00607-013-0301-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00607-013-0301-9" target="_blank" >10.1007/s00607-013-0301-9</a>
Alternative languages
Result language
angličtina
Original language name
Numerical study of steady and unsteady flow for power-law type generalized Newtonian fluids
Original language description
This work deals with the numerical solution of laminar incompressible viscous flow for generalized Newtonian fluids in a branching channel. The governing system of equations is the system of generalized Navier-Stokes equations for incompressible viscousfluids flow. Generalized Newtonian fluids can be divided to two parts: shear thickening fluids and shear thinning fluids. Newtonian fluids are the special case with constant viscosity. For a viscosity function a power-law model is used. Numerical solution of the described model is based on cell-centered finite volume method using explicit Runge-Kutta time integration. The time-marching system of equations with steady boundary conditions is solved by finite volume method in conjunction with an artificialcompressibility method. For the time integration an explicit multistage Runge-Kutta method of the second order of accuracy is used. In the case of unsteady computation two numerical methods are considered, artificial compressibility meth
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computing
ISSN
0010-485X
e-ISSN
—
Volume of the periodical
95
Issue of the periodical within the volume
1
Country of publishing house
AT - AUSTRIA
Number of pages
16
Pages from-to
"S409"-"S424"
UT code for WoS article
000338630100023
EID of the result in the Scopus database
—