Application of Mesh-free Methods in Transient Dynamic Analysis of Orthotropic Plates
Result description
The requirements for losing the weight and increasing the strength and carrying capacity of the plane and space structures are constantly growing. The one of the way how to meet demands is to use the layered shell composite structures. They could be applied not only in mechanical engineering (containers, pressure vessels, etc.) but also in the civil engineering (cooling towers, roofs, etc.). The article deals with computation procedure of shell and plates using meshless methods. A mesh-free local Petrov-Galerkin (MLPG) method is applied to solve laminate plate problems described by the Reissner-Mindlin theory. Two projection methods are developed to generate the shell surface using the Lagrangian mesh-free interpolations. The bending moment and the shear force expressions are obtained by integration through the laminated plate for the considered constitutive equations in each lamina. The Reissner-Mindlin theory reduces the original three-dimensional (3-D) thick plate problem to a two-d
Keywords
Composite MaterialsMeshless MethodsTransient DynamicsOrthotropic Plates
The result's identifiers
Result code in IS VaVaI
Alternative codes found
RIV/44555601:13420/14:43886429
Result on the web
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Application of Mesh-free Methods in Transient Dynamic Analysis of Orthotropic Plates
Original language description
The requirements for losing the weight and increasing the strength and carrying capacity of the plane and space structures are constantly growing. The one of the way how to meet demands is to use the layered shell composite structures. They could be applied not only in mechanical engineering (containers, pressure vessels, etc.) but also in the civil engineering (cooling towers, roofs, etc.). The article deals with computation procedure of shell and plates using meshless methods. A mesh-free local Petrov-Galerkin (MLPG) method is applied to solve laminate plate problems described by the Reissner-Mindlin theory. Two projection methods are developed to generate the shell surface using the Lagrangian mesh-free interpolations. The bending moment and the shear force expressions are obtained by integration through the laminated plate for the considered constitutive equations in each lamina. The Reissner-Mindlin theory reduces the original three-dimensional (3-D) thick plate problem to a two-d
Czech name
—
Czech description
—
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BI - Acoustics and oscillation
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Manufacturing Technology
ISSN
1213-2489
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
7
Pages from-to
441-447
UT code for WoS article
—
EID of the result in the Scopus database
—
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
BI - Acoustics and oscillation
Year of implementation
2014