All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Design of a New Casting Alloys containing Li or Ti+Zr and Optimizatin of its Heat Treatment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F14%3A00223868" target="_blank" >RIV/68407700:21220/14:00223868 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Design of a New Casting Alloys containing Li or Ti+Zr and Optimizatin of its Heat Treatment

  • Original language description

    In this paper was proposed to design new casting alloys on the base of the Al-Mg-Si system using Li addition to achieve precipitation strengthening effect and alloying by Ti+Zr to achieve saturation of solid solution and grain refinement effect. The as-cast and heat treated structure of permanent mould casting of AlMg5Si2Mn containing 1.0 wt.% Li and 0.1 wt.% Ti+0.1 wt.% Zr alloys was investigated by differential scanning calorimetry, microhardness measurements, scanning and transmission electron microscopy and energy dispersive X-ray analysis. Mechanical properties of these alloys were investigated with modern automated ball indentation method. This method showed good convergence with standard tensile tests and allows to determine hardness, yield stress and elastic modulus of tested alloys. It was observed that addition of Li causes modification of (Al)+(Mg2Si) eutectic lamellas making them thinner and interlamella distance becomes larger. Ti+Zr addition does not change eutectic morphology but strongly reduces the size of α-Al dendrites, also, it produces the nucleation particles for primary Mg2Si crystals. Homogenization of studied alloys at 570 C results in disintegration of Mg2Si lamellas and this process takes 30 min to transform plate like lamellas to fine spheres. It was established that hardness and microhardness both of Li and Ti+Zr containing alloys decrease at the same time. Further heating does not produce remarkable changes of hardness. Artificial aging leads to the increasing of hardness and microhardness. Obtained results showed that heat treatment of AlMg5Si2Mn improves its mechanical properties with Li and Ti+Zr assist precipitation hardening and solid solution strengthening effects.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JG - Metallurgy, metal materials

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LO1207" target="_blank" >LO1207: Support of Sustainability of the Innovation Centre of Diagnostics and Applications of Materials at CTU-FME in Prague</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    METAL 2014: 23RD INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS

  • ISBN

    978-80-87294-54-3

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1399-1404

  • Publisher name

    TANGER

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    May 21, 2014

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000350641700232