All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning Entropy for Novelty Detection: A Cognitive Approach for Adaptive Filters

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F14%3A00224887" target="_blank" >RIV/68407700:21220/14:00224887 - isvavai.cz</a>

  • Result on the web

    <a href="http://ieeeexplore.com/stamp/stamp.jsp?tp=&arnumber=6943329" target="_blank" >http://ieeeexplore.com/stamp/stamp.jsp?tp=&arnumber=6943329</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SSPD.2014.6943329" target="_blank" >10.1109/SSPD.2014.6943329</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning Entropy for Novelty Detection: A Cognitive Approach for Adaptive Filters

  • Original language description

    This paper recalls the practical calculation of Learning Entropy (LE) for novelty detection, extends it for various gradient techniques and discusses its use for multivariate dynamical systems with ability of distinguishing between data perturbations orsystem-function perturbations. LE has been recently introduced for novelty detection in time series via supervised incremental learning of polynomial filters, i.e. higher-order neural units (HONU). This paper demonstrates LE also on enhanced gradient descent adaptation techniques that are adopted and summarized for HONU. As an aside, LE is proposed as a new performance index of adaptive filters. Then, we discuss Principal Component Analysis and Kernel PCA for HONU as a potential method to suppress detection of data-measurement perturbations and to enforce LE for system-perturbation novelties.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BC - Theory and management systems

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Sensor Signal Processing for Defence (SSPD), 2014

  • ISBN

    978-1-4799-5294-6

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    1-5

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Edinburgh

  • Event date

    Sep 8, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000349464000026