All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Differential interferometer for measurement of displacement of laser resonator mirrors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F15%3A00309413" target="_blank" >RIV/68407700:21220/15:00309413 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1117/12.2068728" target="_blank" >http://dx.doi.org/10.1117/12.2068728</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.2068728" target="_blank" >10.1117/12.2068728</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Differential interferometer for measurement of displacement of laser resonator mirrors

  • Original language description

    This paper covers a description and a technique of a possible optical method of mode locking within a laser resonator. The measurement system is a part of instrumentation of laser-based experiment OSQAR at CERN. The OSQAR experiment aims at search of axions, axion-like particles and measuring of ultra-fine vacuum magnetic birefringence. It uses a laser resonator to enhance the coupling constant of hypothetical photon-to-axion conversion. The developed locking-in technique is based on differential interferometry. Signal obtained from the measurement provide crucial information for adaptive control of the locking-in of the resonator in real time. In this paper we propose several optical setups used for measurement and analysis of mutual position of the resonator mirrors. We have set up a differential interferometer under our laboratory conditions. We have done measurements with hemi-spherical cavity resonator detuned with piezo crystals. The measurement was set up in a single plane. Laser light was directed through half-wave retarder to a polarizing beam splitter and then converted to circular polarization by lambda/4 plates. After reflection at the mirrors, the beam is recombined in a beam splitter, sent to analyser and non-polarizing beam splitter and then inspected by two detectors with mutually perpendicular polarizers. The 90 degrees phase shift between the two arms allows precise analysis of a mutual distance change of the mirrors. Because our setup was sufficiently stable, we were able to measure the piezo constant and piezo hysteresis. The final goal is to adapt the first prototype to 23 m resonator and measure the displacement in two planes.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JB - Sensors, detecting elements, measurement and regulation

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Photonics, Devices, and Systems VI

  • ISBN

    978-1-62841-566-7

  • ISSN

    0277-786X

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    SPIE

  • Place of publication

    Bellingham (stát Washington)

  • Event location

    Praha

  • Event date

    Apr 13, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000349404500027