All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Online data centering modifications for adaptive filtering with NLMS algorithm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F16%3A00305511" target="_blank" >RIV/68407700:21220/16:00305511 - isvavai.cz</a>

  • Result on the web

    <a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7727413" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7727413</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IJCNN.2016.7727413" target="_blank" >10.1109/IJCNN.2016.7727413</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Online data centering modifications for adaptive filtering with NLMS algorithm

  • Original language description

    This paper presents method with two modifications how to transform data in real-time for better performance of normalized least mean squares (NLMS) algorithm. The method centers input vector for adaptive filter online according to temporary or historical statistical attributes of the input vector. The method is derived for an adaptive filter with NLMS adaptation. The filter implementation is the linear neural unit. The stability condition for the given filter is also presented. The filter is tested on multiple simulated time series contaminated with white noise. The convergence of the suggested algorithms is also analyzed and time complexity is discussed.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BC - Theory and management systems

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of International Joint Conference on Neural Networks 2016

  • ISBN

    9781509006199

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    1767-1771

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Vancouver

  • Event date

    Jul 24, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article