All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Study of Learning Entropy for onset detection of epileptic seizures in EEG time series

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F16%3A00305512" target="_blank" >RIV/68407700:21220/16:00305512 - isvavai.cz</a>

  • Result on the web

    <a href="http://ieeexplore.ieee.org/document/7727621/" target="_blank" >http://ieeexplore.ieee.org/document/7727621/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IJCNN.2016.7727621" target="_blank" >10.1109/IJCNN.2016.7727621</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Study of Learning Entropy for onset detection of epileptic seizures in EEG time series

  • Original language description

    This paper presents a case study of non-Shannon entropy, i.e. Learning Entropy (LE), for instant detection of onset of epileptic seizures in individual EEG time series. Contrary to entropy methods of EEG evaluation that are based on probabilistic computations, we present the LE-based approach that evaluates the conformity of individual samples of data to the contemporary learned governing law of a learning system and thus LE can detect changes of dynamics on individual samples of data. For comparison, the principle and the results are compared to the Sample Entropy approach. The promising results indicate the LE potentials for feature extraction enhancement for early detection of epileptic seizures on individual-data-sample basis.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BC - Theory and management systems

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of International Joint Conference on Neural Networks 2016

  • ISBN

    9781509006199

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    3302-3305

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Vancouver

  • Event date

    Jul 24, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article