HONU and Supervised Learning Algorithms in Adaptive Feedback Control
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F16%3A00305518" target="_blank" >RIV/68407700:21220/16:00305518 - isvavai.cz</a>
Result on the web
<a href="http://www.igi-global.com/chapter/honu-and-supervised-learning-algorithms-in-adaptive-feedback-control/152096" target="_blank" >http://www.igi-global.com/chapter/honu-and-supervised-learning-algorithms-in-adaptive-feedback-control/152096</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-5225-0063-6.ch002" target="_blank" >10.4018/978-1-5225-0063-6.ch002</a>
Alternative languages
Result language
angličtina
Original language name
HONU and Supervised Learning Algorithms in Adaptive Feedback Control
Original language description
This chapter is a summarizing study of Higher Order Neural Units featuring the most common learning algorithms for identification and adaptive control of most typical representatives of plants of single-input single-output (SISO) nature in the control engineering field. In particular, the linear neural unit (LNU, i.e., 1st order HONU), quadratic neural unit (QNU, i.e. 2nd order HONU), and cubic neural unit (CNU, i.e. 3rd order HONU) will be shown as adaptive feedback controllers of typical models of linear plants in control including identification and control of plants with input time delays. The investigated and compared learning algorithms for HONU will be the step-by-step Gradient Descent adaptation with the study of known modifications of learning rate for improved convergence, the batch Levenberg-Marquardt algorithm, and the Resilient Back-Propagation algorithm. The theoretical achievements will be summarized and discussed as regards their usability and the real issues of control engineering tasks.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů