Review on Higher-Order Neural Units to Monitor Cardiac Arrhythmia Patterns
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F17%3A00315048" target="_blank" >RIV/68407700:21220/17:00315048 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3233/978-1-61499-773-3-219" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-773-3-219</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/978-1-61499-773-3-219" target="_blank" >10.3233/978-1-61499-773-3-219</a>
Alternative languages
Result language
angličtina
Original language name
Review on Higher-Order Neural Units to Monitor Cardiac Arrhythmia Patterns
Original language description
An electrocardiogram (ECG) is a non-invasive technique that checks for problems with the electrical activity of a patient’s heart. ECG is economical and extremely versatile. Some of its characteristics make it a very useful tool to detect cardiac pathologies. The ECG records a series of characteristic waves called PQRST; however, the QRS complex analysis enables the detection of a type of arrhythmia in an ECG. Technological developments enable the storage of a large amount of data, from which knowledge extraction is impossible without a powerful data processing tool; in particular, an adequate signal processing tool, whose output provides reliable parameters as a basis to make a precise clinical diagnosis. Thus, ECG signal processing creates an opportunity to analyze and recognize possible arrhythmia patterns. This paper reviews the use of artificial neural networks (ANNs) to detect and recognize cardiac arrhythmia patterns. Recurrent neural networks (RNNs) and higher-order neural units are inspected. In addition, the potentials of using higher-order neural units such as the quadratic dynamic neural unit (D-QNU) and dynamic cubic neural unit (D-CNU) for cardiac arrhythmia detection are analyzed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 8th International Conference on Applications of Digital Information and Web Technologies
ISBN
978-1-61499-772-6
ISSN
—
e-ISSN
—
Number of pages
13
Pages from-to
219-231
Publisher name
IOS Press BV
Place of publication
Amsterdam
Event location
Juarez City
Event date
Mar 29, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000440621900020