All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Review on Higher-Order Neural Units to Monitor Cardiac Arrhythmia Patterns

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F17%3A00315048" target="_blank" >RIV/68407700:21220/17:00315048 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.3233/978-1-61499-773-3-219" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-773-3-219</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3233/978-1-61499-773-3-219" target="_blank" >10.3233/978-1-61499-773-3-219</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Review on Higher-Order Neural Units to Monitor Cardiac Arrhythmia Patterns

  • Original language description

    An electrocardiogram (ECG) is a non-invasive technique that checks for problems with the electrical activity of a patient’s heart. ECG is economical and extremely versatile. Some of its characteristics make it a very useful tool to detect cardiac pathologies. The ECG records a series of characteristic waves called PQRST; however, the QRS complex analysis enables the detection of a type of arrhythmia in an ECG. Technological developments enable the storage of a large amount of data, from which knowledge extraction is impossible without a powerful data processing tool; in particular, an adequate signal processing tool, whose output provides reliable parameters as a basis to make a precise clinical diagnosis. Thus, ECG signal processing creates an opportunity to analyze and recognize possible arrhythmia patterns. This paper reviews the use of artificial neural networks (ANNs) to detect and recognize cardiac arrhythmia patterns. Recurrent neural networks (RNNs) and higher-order neural units are inspected. In addition, the potentials of using higher-order neural units such as the quadratic dynamic neural unit (D-QNU) and dynamic cubic neural unit (D-CNU) for cardiac arrhythmia detection are analyzed.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 8th International Conference on Applications of Digital Information and Web Technologies

  • ISBN

    978-1-61499-772-6

  • ISSN

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    219-231

  • Publisher name

    IOS Press BV

  • Place of publication

    Amsterdam

  • Event location

    Juarez City

  • Event date

    Mar 29, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000440621900020