All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Response of as-cast Al–Zn–Mg alloy with and without Sc, Zr-Aaddition to annealing with constant heating rate

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F17%3A00315183" target="_blank" >RIV/68407700:21220/17:00315183 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Response of as-cast Al–Zn–Mg alloy with and without Sc, Zr-Aaddition to annealing with constant heating rate

  • Original language description

    The as-cast Al–Zn–Mg-based alloy with and without Sc,Zr-addition was investigated during isochronal annealing from room temperature up to 480 °C. Precipitation reactions were studied by electrical resistometry, microhardness measurements and differential scanning calorimetry. These measurements were compared to microstructure development that was observed by optical microscopy and transmission and scanning electron microscopy. Microstructure observation proved the Zn,Mg-containing eutectic phase at grain boundaries in the as-cast state of both alloys. It was also observed that the Sc,Zr-content is not homogeneously distributed but concentrated in randomly localized matrix regions and together with Zn and Mg in the particles at grain boundaries. The distinct changes in resistivity and microhardness curves as well as in heat flow of the alloys studied are mainly caused by dissolution of the Zn,Mg-containing Guiner-Preston (GP) zones and subsequent precipitation of the metastable particles from the Al–Zn–Mg system. The hardening effect after isochronal annealing at temperatures above ~ 280 °C reflects the Sc,Zr-addition. The eutectic Zn,Mg-containing phase partly disappeared during the isochronal annealing above this temperature. Precipitation of the Mn,Fe-contaning particles was also observed in the alloys. The apparent activation energy values were calculated regardless of Sc,Zr- addition as: dissolution of the GP zones (~ 100 kJ/mol) and formation of the metastable Zn,Mg-containing particles (~ 100 kJ/mol). Melting of the eutectic phase was observed by differential scanning calorimetry at ~ 475 °C.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/LO1207" target="_blank" >LO1207: Support of Sustainability of the Innovation Centre of Diagnostics and Applications of Materials at CTU-FME in Prague</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Metal 2017 - Conference Proceedings

  • ISBN

    978-80-87294-73-4

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1-6

  • Publisher name

    Tanger

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    May 24, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article