All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part I: Turbine Rainbow Rotor Testing and Numerical Methods

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F18%3A00330616" target="_blank" >RIV/68407700:21220/18:00330616 - isvavai.cz</a>

  • Result on the web

    <a href="http://turbomachinery.asmedigitalcollection.asme.org/article.aspx?articleid=2703055" target="_blank" >http://turbomachinery.asmedigitalcollection.asme.org/article.aspx?articleid=2703055</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1115/1.4041465" target="_blank" >10.1115/1.4041465</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part I: Turbine Rainbow Rotor Testing and Numerical Methods

  • Original language description

    Blade tip design and tip leakage flows are crucial aspects for the development of modern aero-engines. The inevitable clearance between stationary and rotating parts in turbine stages generates high-enthalpy unsteady leakage flows that strongly reduce the engine efficiency and can cause thermally induced blade failures. An improved understanding of the tip flow physics is essential to refine the current design strategies and achieve increased turbine aerothermal performance. This work presents a complete numerical and experimental investigation on the unsteady flow field of a high-pressure turbine, adopting three different blade tip profiles. The aerothermal characteristics of two novel high-performance tip geometries, one with a fully contoured shape and the other presenting a multicavity squealer-like tip with partially open external rims, are compared against the baseline performance of a regular squealer geometry. The turbine stage is tested at engine-representative conditions in the high-speed turbine facility of the von Karman Institute. A rainbow rotor is mounted for simultaneous aerothermal testing of multiple blade tip geometries. A numerical campaign of full-stage simulations was also conducted on all the investigated tip designs to model the secondary flows development and identify the tip loss and heat transfer mechanisms. In the first part of this work, we describe the experimental setup, instrumentation, and data processing techniques used to measure the unsteady aerothermal field of multiple blade tip geometries using the rainbow rotor approach. We report the time-average and time-resolved static pressure and heat transfer measured on the shroud of the turbine rotor. The experimental data are compared against numerical predictions. These numerical results are then used in the second part of the paper to analyze the tip flow physics, model the tip loss mechanisms, and quantify the aero-thermal performance of each tip geometry.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    20304 - Aerospace engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Turbomachinery

  • ISSN

    0889-504X

  • e-ISSN

    1528-8900

  • Volume of the periodical

    141

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database