All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Investigation of heat and mass transfer processes in the combustion chamber of industrial power plant boiler. Part 2. distribution of concentrations of O2, CO, CO2, NO

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F18%3A00338910" target="_blank" >RIV/68407700:21220/18:00338910 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.24132/acm.2018.396" target="_blank" >https://doi.org/10.24132/acm.2018.396</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.24132/acm.2018.396" target="_blank" >10.24132/acm.2018.396</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Investigation of heat and mass transfer processes in the combustion chamber of industrial power plant boiler. Part 2. distribution of concentrations of O2, CO, CO2, NO

  • Original language description

    In the present paper, a study of furnace processes in the combustion chamber of the real energy boiler BKZ-160 of Almaty TPP-3 (Kazakhstan) using three-dimensional modeling methods has been carried out. Calculations of the combustion chamber for flame combustion of pulverized coal have been performed. The main purpose of this paper was to study the effect of fractional fuel composition on the concentration characteristics of the combustion process. Numerical simulation was carried out with two models of coal particle size distribution: monodisperse fuel flame (coal particle size identical and equal to 60 μm) and a polydisperse fuel flame (coal particle diameter varies from 10 to 120 μm). The polydisperse distribution corresponds to the fractional distribution (percentage of total coal particles) calculated for this boiler: the first fraction – 10% with dp = 10 μm; 20% with dp = 30 μm; 40% with dp = 60 μm; 20% with dp = 100 μm; 10% with dp = 120 μm. The numerical simulation results of the influence of the pulverized coal particle size composition on concentration characteristics of combustion process are presented. The distributions of oxidizer (oxygen) and combustion products (NO, CO, CO2) are shown. Areas with the greatest concentration of gas products of burning are determined, regularities of formation of products and their concentration at the exit of fire chamber are also determined. The effect of fractional fuel composition on the obtained characteristics is sufficiently large, the empirical data obtained directly at TPP-3 show better convergence with the result of the computational experiment that confirms simultaneously the adequacy of the used physical and mathematical statement of the problem, as well as the validity of using the model of polyfractional distribution.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20303 - Thermodynamics

Result continuities

  • Project

  • Continuities

    O - Projekt operacniho programu

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied and Computational Mechanics

  • ISSN

    1802-680X

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    12

  • Pages from-to

    127-138

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85066982549