Investigation of heat and mass transfer processes in the combustion chamber of industrial power plant boiler. Part 2. distribution of concentrations of O2, CO, CO2, NO
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F18%3A00338910" target="_blank" >RIV/68407700:21220/18:00338910 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.24132/acm.2018.396" target="_blank" >https://doi.org/10.24132/acm.2018.396</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24132/acm.2018.396" target="_blank" >10.24132/acm.2018.396</a>
Alternative languages
Result language
angličtina
Original language name
Investigation of heat and mass transfer processes in the combustion chamber of industrial power plant boiler. Part 2. distribution of concentrations of O2, CO, CO2, NO
Original language description
In the present paper, a study of furnace processes in the combustion chamber of the real energy boiler BKZ-160 of Almaty TPP-3 (Kazakhstan) using three-dimensional modeling methods has been carried out. Calculations of the combustion chamber for flame combustion of pulverized coal have been performed. The main purpose of this paper was to study the effect of fractional fuel composition on the concentration characteristics of the combustion process. Numerical simulation was carried out with two models of coal particle size distribution: monodisperse fuel flame (coal particle size identical and equal to 60 μm) and a polydisperse fuel flame (coal particle diameter varies from 10 to 120 μm). The polydisperse distribution corresponds to the fractional distribution (percentage of total coal particles) calculated for this boiler: the first fraction – 10% with dp = 10 μm; 20% with dp = 30 μm; 40% with dp = 60 μm; 20% with dp = 100 μm; 10% with dp = 120 μm. The numerical simulation results of the influence of the pulverized coal particle size composition on concentration characteristics of combustion process are presented. The distributions of oxidizer (oxygen) and combustion products (NO, CO, CO2) are shown. Areas with the greatest concentration of gas products of burning are determined, regularities of formation of products and their concentration at the exit of fire chamber are also determined. The effect of fractional fuel composition on the obtained characteristics is sufficiently large, the empirical data obtained directly at TPP-3 show better convergence with the result of the computational experiment that confirms simultaneously the adequacy of the used physical and mathematical statement of the problem, as well as the validity of using the model of polyfractional distribution.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
20303 - Thermodynamics
Result continuities
Project
—
Continuities
O - Projekt operacniho programu
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied and Computational Mechanics
ISSN
1802-680X
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
12
Pages from-to
127-138
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85066982549