All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sustainability assessment of continuous-flow hydrothermal synthesis of nanomaterials in the context of other production technologies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F19%3A00333278" target="_blank" >RIV/68407700:21220/19:00333278 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jclepro.2019.118325" target="_blank" >https://doi.org/10.1016/j.jclepro.2019.118325</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2019.118325" target="_blank" >10.1016/j.jclepro.2019.118325</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sustainability assessment of continuous-flow hydrothermal synthesis of nanomaterials in the context of other production technologies

  • Original language description

    In this paper, we provide a comprehensive techno-economic and life cycle environmental evaluation of the continuous-flow hydrothermal synthesis (CFHS) of nanoparticles in the context of current production technologies. This method is compared with a set of competitor technologies: Plasma syntheses; Flame pyrolysis; Sol-gel synthesis; Batch Solvo/Hydrothermal syntheses; and Altair hydrochloride process. Technical criteria such as scale and variability of production and material properties are accounted for in the environmental and economic analyses. Case study nanomaterials are investigated with a range of potential applications: titanium dioxide (smart coatings, electronics, and water purification); zinc oxide (smart coatings, cosmetics); zirconium dioxide (nanocomposites, electronics); and lithium phosphate (lithium ion battery cathode material). Results show that CFHS can be ranked among the most productive methods capable of producing up to 100–250 kg/h of different types of high quality NPs dispersed in water. In terms of the environmental impacts, this newly developed technology does not use any toxic solvents, there are no emissions into the environment and the risk of leakage of NPs into environment is negligible. Comparison of values of selected environmental impact categories Cumulative Energy Demand (CED) and Global Warming Potential (GWP) shows that CFHS can compete with industrial technologies with low production variability and limited product quality (e.g. sulfate and chloride processes) and achieves much better results in comparison with technologies with similar variability (e.g. HT plasma or sol-gel) and product quality (sol gel). The same conclusion can be made in the case of an economic assessment. The combination of large scale and variability of production and quality of produced NPs can be considered as the major source of competitive potential of CFHS.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/7E12084" target="_blank" >7E12084: Sustainable HydrothermaI Manufacturing of Nanomaterials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Volume of the periodical

    241

  • Issue of the periodical within the volume

    December

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000489275900063

  • EID of the result in the Scopus database

    2-s2.0-85072013657