SURFACE CHARACTERIZATION OF TITANIUM AFTER ARGON SPUTTER CLEANING
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F19%3A00345832" target="_blank" >RIV/68407700:21220/19:00345832 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
SURFACE CHARACTERIZATION OF TITANIUM AFTER ARGON SPUTTER CLEANING
Original language description
Surface integrity plays a key role in the surface modifications and coating processes that provide high and long-term performance of the treated components. Argon ion bombardment is widely used in many surface modification processes and for surface pre-treatment. The effect of argon sputter cleaning on the residual stress, hardness and surface morphology of commercially pure titanium is investigated in this work. Titanium samples were mechanically polished and then etched by argon ions. The thickness of the sputtered layer was measured by a quartz thickness monitor. The hardness was investigated by nanoindentation, the residual stress was measured by X-ray diffraction, and the surface morphology was monitored by atomic force microscopy. Removal of the surface layer by argon ion bombardment caused a decrease in residual stress and a decrease in hardness. Uneven sputtering of grains resulted in increased surface roughness. The observed changes in surface properties increased with increasing thickness of the removed layer.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
NANOCON 2018 Conference Proceedings
ISBN
978-80-87294-89-5
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
626-630
Publisher name
Tanger Ltd.
Place of publication
Ostrava
Event location
Brno
Event date
Oct 17, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000513131900108