All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On passive damping in machine tool hybrid structural parts

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F21%3A00349955" target="_blank" >RIV/68407700:21220/21:00349955 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00170-021-06865-2" target="_blank" >https://doi.org/10.1007/s00170-021-06865-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00170-021-06865-2" target="_blank" >10.1007/s00170-021-06865-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On passive damping in machine tool hybrid structural parts

  • Original language description

    Hybrid materials combining steel or cast iron with fibre or particle composites have a good potential for lightweight machine tool structural design with high damping ratio. These materials are analyzed in the paper with a focus on damping improvement of structural components and machine tool assemblies. Fibre composites and particle composites were selected as the lightweight elements for the hybrid machine tool structure. The fibre composites were designed as low-density, high stiffness-oriented reinforcements, which were bonded to build metal structural parts conventionally. The particle composites were applied as filler materials into the hollows of the metal structural parts. Both composite structures presented a possibility to reduce the mass of the component due to the reduction of wall thickness (fibre composite) or removal of heavy ribbing (particle composites) and to influence the parts' static and dynamic stiffness. Hybrid structures, combining the light-weight elements with cast iron or welded steel, were designed and tested in case studies using experimental modal analysis methods. Experimental modal analysis was used as the main approach for identification of the damping ratio on a basic coupon level, followed by testing of structural parts in a stand-alone configuration and ending with a structural part assemblies testing. Both particle composites and fibre composites were successful in improving the damping ratio of single structural parts. However, the damping ratio of the hybrid component mounted into an assembly configuration shows only less significant improvement. The presented results demonstrate importance of the damping caused in the connecting interfaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20302 - Applied mechanics

Result continuities

  • Project

    <a href="/en/project/EF16_026%2F0008404" target="_blank" >EF16_026/0008404: Machine Tools and Precision Engineering</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    The International Journal of Advanced Manufacturing Technology

  • ISSN

    0268-3768

  • e-ISSN

    1433-3015

  • Volume of the periodical

    114

  • Issue of the periodical within the volume

    7-8

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    28

  • Pages from-to

    1925-1952

  • UT code for WoS article

    000636640600005

  • EID of the result in the Scopus database

    2-s2.0-85103678156