All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Potential of Energy Savings in Oxygen Production by Pressure Swing Adsorption

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F21%3A00350191" target="_blank" >RIV/68407700:21220/21:00350191 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3303/CET2186053" target="_blank" >https://doi.org/10.3303/CET2186053</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET2186053" target="_blank" >10.3303/CET2186053</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Potential of Energy Savings in Oxygen Production by Pressure Swing Adsorption

  • Original language description

    The pressure swing adsorption (PSA) units are widely used as an oxygen source. The second PSA unit outgoing stream contains a dry mixture of O2 in N2 that is mostly exhausted into the atmosphere. Utilization of this stream's potential and waste compression heat leads to an increase in the unit's overall energetic capacity and the ecologically more friendly processing. This paper aims to demonstrate the above-described possibilities in the case of the oxy-fuel combustion unit. The following four options for integrating PSA technology were analyzed: i) single or dual compression, ii) utilization of waste compression heat for coal or biomass dewatering, iii) utilization of dry waste gas from the PSA unit for coal or biomass dewatering, and iv) energy recovery by an expansion of pressurized oxygen before combustion. The greatest potential for practical application was found for the usage of dual compression (saving of 10 % of electricity) and utilization of waste compression heat for coal or biomass dewatering. In this case, the saving of 5.3 % and 10.4 % of lignite and wood respectively can be reached depending on fuel moisture for reference fuel conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Research centre for low-carbon energy technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    CHEMICAL ENGINEERING TRANSACTIONS

  • ISSN

    2283-9216

  • e-ISSN

    2283-9216

  • Volume of the periodical

    86

  • Issue of the periodical within the volume

    053

  • Country of publishing house

    IT - ITALY

  • Number of pages

    6

  • Pages from-to

    313-318

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85109706036