All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Heat Transfer in Doble Annular due to Natural Covection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F21%3A00351847" target="_blank" >RIV/68407700:21220/21:00351847 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.wmmes.org/files/WMMES2021_Book.pdf" target="_blank" >https://www.wmmes.org/files/WMMES2021_Book.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Heat Transfer in Doble Annular due to Natural Covection

  • Original language description

    Presented paper is focused on 2D numerical simulation of turboprop engine cooling in the section of a gas turbine. The paper describes the issue of heat transfer by natural cooling of a turboprop engine in the turbine region in order to determine the time-dependent temperature field in the engine. The analysis is represented on a simplified double annular geometry, where the inner tube represents the engine rotor, the middle tube represents the flow path and the outer ring replaces the engine case. Simultaneous heat transfer by natural convection (Boussinesq model) and radiation (model S2S) is solved on this geometry. Numerical data were compared with data that was gained from measuring on an experimental stand. The surface temperatures of the tubes were measured on the experiment stand during the cooling of the engine model. The temperatures on the walls of the flow path were based on real temperatures of the running engine as initial conditions together with the temperature of the outer tube. The results will be further applied to the study of temperature-dependent deformation of aircraft engine parts, which have a significant effect on the safety and trouble-free operation of the aircraft engine.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20304 - Aerospace engineering

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Center of Advanced Aerospace Technology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů