All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experimental investigation and modelling of a laboratory-scale latent heat storage with cylindrical PCM capsules

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F21%3A00353172" target="_blank" >RIV/68407700:21220/21:00353172 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1038/s41598-021-02705-1" target="_blank" >https://doi.org/10.1038/s41598-021-02705-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-021-02705-1" target="_blank" >10.1038/s41598-021-02705-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experimental investigation and modelling of a laboratory-scale latent heat storage with cylindrical PCM capsules

  • Original language description

    Heat storage efficiency is required to maximize the potential of combined heat and power generation or renewable energy sources for heating. Using a phase change material (PCM) could be an attractive choice in several instances. Commercially available paraffin-based PCM was investigated using T-history method with sufficient agreement with the data from the manufacturer. The introduced LHTES with cylindrical capsules is simple and scalable in capacity, charging/discharging time, and temperature level. The overall stored energy density is 9% higher than the previously proposed design of similar design complexity. The discharging process of the designed latent heat thermal energy storage (LHTES) was evaluated for two different flow rates. The PCM inside the capsules and heat transfer fluid (HTF) temperature, as well as the HTF flow rate, were measured. The lumped parameter numerical model was developed and validated successfully. The advantage of the proposed model is its computational simplicity, and thus the possibility to use it in simulations of a whole heat distribution network. The so-called state of charge (SoC), which plays a crucial role in successful heat storage management, is a part of the evaluation of both experimental and computational data.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20303 - Thermodynamics

Result continuities

  • Project

    <a href="/en/project/TK02030042" target="_blank" >TK02030042: Latent Thermal Energy Storage in the form of heat or cold within intra-day applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

    2045-2322

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    000725094400039

  • EID of the result in the Scopus database

    2-s2.0-85120649158