IMPROVING THE EFFICIENCY OF A STEAM POWER PLANT CYCLE BY INTEGRATING A ROTARY INDIRECT DRYER
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F21%3A00355691" target="_blank" >RIV/68407700:21220/21:00355691 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.14311/AP.2021.61.0448" target="_blank" >https://doi.org/10.14311/AP.2021.61.0448</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/AP.2021.61.0448" target="_blank" >10.14311/AP.2021.61.0448</a>
Alternative languages
Result language
angličtina
Original language name
IMPROVING THE EFFICIENCY OF A STEAM POWER PLANT CYCLE BY INTEGRATING A ROTARY INDIRECT DRYER
Original language description
This article deals with the integration of a rotary indirect dryer, heated by low pressure extraction steam, into the Rankine cycle. The article evaluates the power generation efficiency of a steam power plant, with an integrated indirect dryer, which combusts waste biomass with a high moisture content and is further compared to the same plant without the dryer. The benefits of the dryer's integration are analysed in respect to various moisture contents of biomass before and after the drying. The evaluation of the power generation efficiency is based on parameters evaluated from experiments carried out on the steam-heated rotary indirect dryer, such as specific energy consumption and evaporation capacity. The dryer's integration improves the efficiency of the cycle in comparison to a cycle without a dryer, where moist biomass is directly combusted. This improvement increases along with the difference between the moisture content before and after the drying. For the reference state, a fuel with a moisture content of 50 % was dried to 20 % and the efficiency rised by 4.38%. When the fuel with a moisture content of 60% is dried to 10%, the power generation efficiency increases by a further 10.1 %. However, the required dryer surface for drying the fuel with a moisture content of 60% to 10 % is 1.9 times greater as compared to the reference state. The results of the work can be used both for the prediction of the power generation efficiency in a power plant with this type of dryer based on the moisture content in the fuel and the biomass indirect dryer design.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
20301 - Mechanical engineering
Result continuities
Project
<a href="/en/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Research centre for low-carbon energy technologies</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Polytechnica
ISSN
1210-2709
e-ISSN
1805-2363
Volume of the periodical
61
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
8
Pages from-to
448-455
UT code for WoS article
000672348300005
EID of the result in the Scopus database
2-s2.0-85110794308