Energy, exergy, economic and environmental (4E) analysis of a parabolic trough solar collector using MXene based silicone oil nanofluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00356395" target="_blank" >RIV/68407700:21220/22:00356395 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.solmat.2022.111633" target="_blank" >https://doi.org/10.1016/j.solmat.2022.111633</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.solmat.2022.111633" target="_blank" >10.1016/j.solmat.2022.111633</a>
Alternative languages
Result language
angličtina
Original language name
Energy, exergy, economic and environmental (4E) analysis of a parabolic trough solar collector using MXene based silicone oil nanofluids
Original language description
The present study is a 4E (Energy, Exergy, Economic, and Environmental) analysis of a nanofluid-based parabolic trough collector (PTC) which is conducted with a developed model in MATLAB. MXene (Ti3C2) nanoparticles were added to the silicon oil at weight concentrations of 0.05, 0.08, and 0.1%. The result was the important enhancement of the thermal conductivity of the nanofluid on the rand of 70%–89% for the highest concentration. According to the results, the PTC's optical efficiency was estimated at 79%, while thermal and exergy efficiencies of 74.71% and 22.44% with 0.10 wt% concentration were recorded on July 17, 2019. It is found that the MXene based silicone oil can reduce the system's cost by 0.021 M$ and enhance the energy gained by 1.51% at 0.10 wt% concentration compared to pure oil. Also, the annual CO2 mitigation from the energy side varies from 2.25 to 2.30-ton CO2/year, while the annual environmental gain ranged between 32.73 and 33.28 $/year and 9.065 to 9.102 $/year for the energy and exergy studies respectively.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20302 - Applied mechanics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Solar Energy Materials and Solar Cells
ISSN
0927-0248
e-ISSN
1879-3398
Volume of the periodical
239
Issue of the periodical within the volume
June
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
24
Pages from-to
—
UT code for WoS article
000781732000003
EID of the result in the Scopus database
2-s2.0-85126753158