All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Selectivity and separation factor for components during multicomponent membrane gas separation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00358699" target="_blank" >RIV/68407700:21220/22:00358699 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3303/CET2292019" target="_blank" >https://doi.org/10.3303/CET2292019</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET2292019" target="_blank" >10.3303/CET2292019</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Selectivity and separation factor for components during multicomponent membrane gas separation

  • Original language description

    The membrane separation process offers a promising solution for syngas components separation and adjusting the ratio of the components. The multicomponent separation process is however complex and cannot be easily described. The presented study offers a comparison of ideal and real selectivities for three H2-CO-CO2 model mixtures containing 15-35 mol% H2, 35 mol% CO, and 30-50 mol% CO2. The mixtures were tested with total pressure drops 0.5-8 bar (retentate pressure from 2 to 10 bar with the permeate pressure levels of 1.2 bar, 2.5 bar, and 4 bar). The membrane module used in the study is a hollow fiber polyimide membrane module with 3000 hollow fibers with an inner diameter of 0.188 mm and a length of 290 mm with an active separation layer. The ideal selectivities for are α(H2/CO2) = 3.21 and α(CO2/CO) = 14.77. The experimental results show that with increasing stagecut, the selectivities drop to below 1.3 for H2/CO2 (40 % of the ideal selectivity) and to below 1.4 for CO2/CO (9.5 % of the ideal selectivity). Also, the selectivity decreases at a different rate for both different feed compositions and different permeate pressures. The H2/CO2 selectivity drops faster for lower permeate pressure, the CO2/CO selectivity drops faster for higher permeate pressure. The separation factors increase both for H2/CO2 and CO2/CO with increasing pressure differences. Also, with the lower permeate pressure (pP = 1.2 bar) both separation factors (for H2/CO2 and CO2/CO) increase at a greater rate.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Research centre for low-carbon energy technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    CHEMICAL ENGINEERING TRANSACTIONS

  • ISSN

    2283-9216

  • e-ISSN

    2283-9216

  • Volume of the periodical

    92

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    IT - ITALY

  • Number of pages

    6

  • Pages from-to

    109-114

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85133692309