Influence of Reagents on the Synthesis Process and Shape of Silver Nanoparticles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00360254" target="_blank" >RIV/68407700:21220/22:00360254 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/ma15196829" target="_blank" >https://doi.org/10.3390/ma15196829</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma15196829" target="_blank" >10.3390/ma15196829</a>
Alternative languages
Result language
angličtina
Original language name
Influence of Reagents on the Synthesis Process and Shape of Silver Nanoparticles
Original language description
The aim of this study was to prepare the silver nanoparticles (AgNPs) via chemical reduction and analyze the impact of used reduction agents: sodium borohydride (NaBH4), trisodium citrate (TSC), polyvinylpyrrolidone (PVP), and hydrogen peroxide (H2O2) on the reduction rate of Ag+ ions to Ag0, and on nanoparticles shape. It was proven that combinations of reduction agents dramatically influence the synthesis rate of AgNPs and the color of solutions, which depends on the shape and size of nanoparticles. NaBH4, TSC, and PVP showed good reduction power. In particular, TSC proved to be a key factor influencing the shape of AgNPs. The shape of nanoparticles influences the color of colloidal solutions. Yellow solutions, where UV-vis absorbance maxima (ABSmax) are in the wavelength interval 380–420 nm, contain spherical particles with a mean size of 25 nm, whereas the blue shift of ABSmax to wavelengths higher than 750 nm indicate the presence of triangular nanoparticles (size interval 18–150 nm). A mixture of spherical, triangular, irregular, and hexagonal nanoparticles give different color, e.g., green. The formation and stability of AgNPs was tracked by UV-vis spectroscopy, size and shape by TEM techniques, and particle size distribution was studied by particle size analyzer.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Materials
ISSN
1996-1944
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
19
Country of publishing house
CH - SWITZERLAND
Number of pages
10
Pages from-to
1-10
UT code for WoS article
000867218500001
EID of the result in the Scopus database
2-s2.0-85139971087