On the development of Cahn-Hilliard Navier-Stokes numerical solver within OpenFOAM framework
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00362751" target="_blank" >RIV/68407700:21220/22:00362751 - isvavai.cz</a>
Result on the web
<a href="https://www.kme.zcu.cz/compmech/download/proceedings/CM2022_Conference_Proceedings.pdf" target="_blank" >https://www.kme.zcu.cz/compmech/download/proceedings/CM2022_Conference_Proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the development of Cahn-Hilliard Navier-Stokes numerical solver within OpenFOAM framework
Original language description
There exist various strategies used for description and computing two-phase fluid flows, both form theoretical and engineering point of view. The physical models of our interest belong to the family of models using only one set of equations for all the fluid phases with addition of phase-transport equation closing the system. Engineering two-phase flow simulations mostly refer to either of two interface-capturing methods, namely the Level-Set and the Volume-of-Fluid (VoF) approach which both reconstruct the free surface from an indicator function. The less common approach based on diffuse interface is Cahn-Hilliard model, offering many advantages, including mass conservation, thermodynamic consistency, and a free-energy-based description of surface tension with a well-established theory from non-equilibrium thermodynamics. This contribution presents Cahn-Hilliard Navier-Stokes solver being developed within the OpenFOAM framework. The performance of new solver is compared with built-in VoF solver on a simple test case. Several solution algorithms and future development possibilities are discussed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
PROCEEDINGS OF COMPUTATIONAL MECHANICS 2022
ISBN
978-80-261-1116-0
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
75-78
Publisher name
Západočeská univerzita v Plzni
Place of publication
Plzeň
Event location
Srní
Event date
Nov 7, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—