Using hybrid physics-informed neural networks to predict lifetime under multiaxial fatigue loading
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00368411" target="_blank" >RIV/68407700:21220/23:00368411 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.engfracmech.2023.109351" target="_blank" >https://doi.org/10.1016/j.engfracmech.2023.109351</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engfracmech.2023.109351" target="_blank" >10.1016/j.engfracmech.2023.109351</a>
Alternative languages
Result language
angličtina
Original language name
Using hybrid physics-informed neural networks to predict lifetime under multiaxial fatigue loading
Original language description
In this article, a machine learning approach is utilized to predict lifetime under multiaxial fatigue loading. A novel hybrid physics-informed neural network is proposed, where a combination of a LSTM/GRU cell and a fully connected layer is used to extract the damage parameter of a loading cycle. A newly proposed logarithmic activation function is then used to introduce the power law relationship between the damage parameter and the predicted fatigue life. In addition, the selected parameters of the suggested network are physically guided. Two data pre-processing methods are used to ascertain the rotational invariance of the axial–torsional loading conditions. The prediction capability of the suggested approach is demonstrated by the experimental datasets that consist of axial–torsional test results obtained for 42CrMo4 steel and for 2024-T3 aluminium alloy. A good correlation between the predicted and experimental data was achieved. Finally, the extrapolation capability of the proposed approach is demonstrated through modelling the stress-life curves for the data-points outside the experimental data range.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20302 - Applied mechanics
Result continuities
Project
<a href="/en/project/GA21-06645S" target="_blank" >GA21-06645S: Life assessment of mechanical components under multiaxial thermo-mechanical loading with variable amplitude</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Engineering Fracture Mechanics
ISSN
0013-7944
e-ISSN
1873-7315
Volume of the periodical
289
Issue of the periodical within the volume
September
Country of publishing house
GB - UNITED KINGDOM
Number of pages
19
Pages from-to
—
UT code for WoS article
001027508200001
EID of the result in the Scopus database
2-s2.0-85162882691