About the appropriate neural network size for the engineering applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00368939" target="_blank" >RIV/68407700:21220/23:00368939 - isvavai.cz</a>
Result on the web
<a href="https://www.kme.zcu.cz/compmech/download/proceedings/CM2023_Conference_Proceedings.pdf" target="_blank" >https://www.kme.zcu.cz/compmech/download/proceedings/CM2023_Conference_Proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
About the appropriate neural network size for the engineering applications
Original language description
Deep learning approaches became very popular in recent years. In terms of computational effectivity and time required for the learning process, number of degrees of freedom in the proposed neural network plays singificant role. Thus, an apriori information about the appropriate neural network size for a given task could be very promising tool in machine learning tasks. In the contrast to the standard machine learning approaches aimed to deep learning, present contribution deals with shallow higher order networks. Basics of networks are introduced and comparisons between different neural network architectures to capture more demanding engineering task is presented. Basic idea of the neural network size apriori estimation for the task is discussed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Center of Advanced Aerospace Technology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
PROCEEDINGS OF COMPUTATIONAL MECHANICS 2023
ISBN
978-80-261-1177-1
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
91-94
Publisher name
Západočeská univerzita v Plzni
Place of publication
Plzeň
Event location
Srní
Event date
Oct 23, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—